Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(10): e2311720121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38408234

RESUMEN

Inner ear morphogenesis requires tightly regulated epigenetic and transcriptional control of gene expression. CHD7, an ATP-dependent chromodomain helicase DNA-binding protein, and SOX2, an SRY-related HMG box pioneer transcription factor, are known to contribute to vestibular and auditory system development, but their genetic interactions in the ear have not been explored. Here, we analyzed inner ear development and the transcriptional regulatory landscapes in mice with variable dosages of Chd7 and/or Sox2. We show that combined haploinsufficiency for Chd7 and Sox2 results in reduced otic cell proliferation, severe malformations of semicircular canals, and shortened cochleae with ectopic hair cells. Examination of mice with conditional, inducible Chd7 loss by Sox2CreER reveals a critical period (~E9.5) of susceptibility in the inner ear to combined Chd7 and Sox2 loss. Data from genome-wide RNA-sequencing and CUT&Tag studies in the otocyst show that CHD7 regulates Sox2 expression and acts early in a gene regulatory network to control expression of key otic patterning genes, including Pax2 and Otx2. CHD7 and SOX2 directly bind independently and cooperatively at transcription start sites and enhancers to regulate otic progenitor cell gene expression. Together, our findings reveal essential roles for Chd7 and Sox2 in early inner ear development and may be applicable for syndromic and other forms of hearing or balance disorders.


Asunto(s)
Redes Reguladoras de Genes , Vestíbulo del Laberinto , Animales , Ratones , Cóclea , Regulación del Desarrollo de la Expresión Génica , Mamíferos , Canales Semicirculares , Factores de Transcripción
2.
bioRxiv ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38352369

RESUMEN

The chromodomain helicase binding protein 4 (CHD4) is an ATP-dependent chromatin remodeler. De-novo pathogenic variants of CHD4 cause Sifrim-Hitz-Weiss syndrome (SIHIWES). Patients with SIHIWES show delayed development, intellectual disability, facial dysmorphism, and hearing loss. Many cochlear cell types, including spiral ganglion neurons (SGNs), express CHD4. SGNs are the primary afferent neurons that convey sound information from the cochlea, but the function of CHD4 in SGNs is unknown. We employed the Neurog1(Ngn1) CreERT2 Chd4 conditional knockout animals to delete Chd4 in SGNs. SGNs are classified as type I and type II neurons. SGNs lacking CHD4 showed abnormal fasciculation of type I neurons along with improper pathfinding of type II fibers. CHD4 binding to chromatin from immortalized multipotent otic progenitor-derived neurons was used to identify candidate target genes in SGNs. Gene ontology analysis of CHD4 target genes revealed cellular processes involved in axon guidance, axonal fasciculation, and ephrin receptor signaling pathway. We validated increased Epha4 transcripts in SGNs from Chd4 conditional knockout cochleae. The results suggest that CHD4 attenuates the transcription of axon guidance genes to form the stereotypic pattern of SGN peripheral projections. The results implicate epigenetic changes in circuit wiring by modulating axon guidance molecule expression and provide insights into neurodevelopmental diseases.

3.
Hear Res ; 436: 108813, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37329862

RESUMEN

Loss of spiral ganglion neurons (SGNs) in the cochlea causes hearing loss. Understanding the mechanisms of cell fate transition accelerates efforts that employ directed differentiation and lineage conversion to repopulate lost SGNs. Proposed strategies to regenerate SGNs rely on altering cell fate by activating transcriptional regulatory networks, but repressing networks for alternative cell lineages is also essential. Epigenomic changes during cell fate transitions suggest that CHD4 represses gene expression by altering the chromatin status. Despite limited direct investigations, human genetic studies implicate CHD4 function in the inner ear. The possibility of CHD4 in suppressing alternative cell fates to promote inner ear regeneration is discussed.


Asunto(s)
Oído Interno , Pérdida Auditiva Sensorineural , Humanos , Diferenciación Celular/fisiología , Neuronas/metabolismo , Pérdida Auditiva Sensorineural/metabolismo , Ganglio Espiral de la Cóclea/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo
4.
Mol Psychiatry ; 28(2): 746-758, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36207584

RESUMEN

Synonymous and noncoding single nucleotide polymorphisms (SNPs) in the KCNJ6 gene, encoding G protein-gated inwardly rectifying potassium channel subunit 2 (GIRK2), have been linked with increased electroencephalographic frontal theta event-related oscillations (ERO) in subjects diagnosed with alcohol use disorder (AUD). To identify molecular and cellular mechanisms while retaining the appropriate genetic background, we generated induced excitatory glutamatergic neurons (iN) from iPSCs derived from four AUD-diagnosed subjects with KCNJ6 variants ("Affected: AF") and four control subjects without variants ("Unaffected: UN"). Neurons were analyzed for changes in gene expression, morphology, excitability and physiological properties. Single-cell RNA sequencing suggests that KCNJ6 AF variant neurons have altered patterns of synaptic transmission and cell projection morphogenesis. Results confirm that AF neurons express lower levels of GIRK2, have greater neurite area, and elevated excitability. Interestingly, exposure to intoxicating concentrations of ethanol induces GIRK2 expression and reverses functional effects in AF neurons. Ectopic overexpression of GIRK2 alone mimics the effect of ethanol to normalize induced excitability. We conclude that KCNJ6 variants decrease GIRK2 expression and increase excitability and that this effect can be minimized or reduced with ethanol.


Asunto(s)
Alcoholismo , Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Humanos , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Etanol/farmacología , Etanol/metabolismo , Neuronas/metabolismo , Alcoholismo/genética , Alcoholismo/metabolismo , Electroencefalografía
5.
Cell Stem Cell ; 29(7): 1135-1153.e8, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35803230

RESUMEN

Microglia are critical in brain development and Alzheimer's disease (AD) etiology. Down syndrome (DS) is the most common genetic developmental disorder and risk factor for AD. Surprisingly, little information is available on the impact of trisomy of human chromosome 21 (Hsa21) on microglial functions during DS brain development and in AD in DS. Using induced pluripotent stem cell (iPSC)-based organoid and chimeric mouse models, we report that DS microglia exhibit an enhanced synaptic pruning function, which alters neuronal synaptic functions. In response to human brain tissue-derived pathological tau, DS microglia undergo cellular senescence and exhibit elevated type-I-interferon signaling. Mechanistically, knockdown of Hsa21-encoded type I interferon receptors, IFNARs, rescues the DS microglial phenotypes both during brain development and in response to pathological tau. Our findings provide in vivo evidence that human microglia respond to pathological tau by exhibiting dystrophic phenotypes. Targeting IFNARs may improve DS microglial functions and prevent senescence.


Asunto(s)
Enfermedad de Alzheimer , Síndrome de Down , Células Madre Pluripotentes Inducidas , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Síndrome de Down/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Interferones/metabolismo , Ratones , Microglía
6.
Nat Commun ; 13(1): 889, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35173156

RESUMEN

The existence of non-canonical nicotinamide adenine diphosphate (NAD) 5'-end capped RNAs is now well established. Nevertheless, the biological function of this nucleotide metabolite cap remains elusive. Here, we show that the yeast Saccharomyces cerevisiae cytoplasmic 5'-end exoribonuclease Xrn1 is also a NAD cap decapping (deNADding) enzyme that releases intact NAD and subsequently degrades the RNA. The significance of Xrn1 deNADding is evident in a deNADding deficient Xrn1 mutant that predominantly still retains its 5'-monophosphate exonuclease activity. This mutant reveals Xrn1 deNADding is necessary for normal growth on non-fermenting sugar and is involved in modulating mitochondrial NAD-capped RNA levels and may influence intramitochondrial NAD levels. Our findings uncover a contribution of mitochondrial NAD-capped RNAs in overall NAD regulation with the deNADding activity of Xrn1 fulfilling a central role.


Asunto(s)
Exorribonucleasas/metabolismo , NAD/genética , Caperuzas de ARN/metabolismo , ARN Mitocondrial/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Exorribonucleasas/genética , Mitocondrias/genética , Caperuzas de ARN/genética , Estabilidad del ARN/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
7.
Biol Open ; 11(12)2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36594417

RESUMEN

Homeobox genes act at the top of genetic hierarchies to regulate cell specification and differentiation during embryonic development. We identified the short stature homeobox domain 2 (shox2) transcription factor that is required for vestibular neuron development. shox2 transcripts are initially localized to the otic placode of the developing inner ear where neurosensory progenitors reside. To study shox2 function, we generated CRISPR-mediated mutant shox2 fish. Mutant embryos display behaviors associated with vestibular deficits and showed reduced number of anterior statoacoustic ganglion neurons that innervate the utricle, the vestibular organ in zebrafish. Moreover, a shox2-reporter fish showed labeling of developing statoacoustic ganglion neurons in the anterior macula of the otic vesicle. Single cell RNA-sequencing of cells from the developing otic vesicle of shox2 mutants revealed altered otic progenitor profiles, while single molecule in situ assays showed deregulated levels of transcripts in developing neurons. This study implicates a role for shox2 in development of vestibular but not auditory statoacoustic ganglion neurons.


Asunto(s)
Oído Interno , Pez Cebra , Animales , Pez Cebra/genética , Oído Interno/inervación , Factores de Transcripción , Neurogénesis , Neuronas , Proteínas de Pez Cebra/genética
8.
Curr Opin Otolaryngol Head Neck Surg ; 29(5): 366-372, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34374667

RESUMEN

PURPOSE OF REVIEW: Sensory hair cells (HCs) of the inner ear are responsible for our ability to hear and balance. Loss of these cells results in hearing loss. Stem cell replacement and in situ regeneration have the potential to replace lost HCs. Newly discovered contributions of transcription factor regulatory networks and epigenetic mechanisms in regulating HC differentiation and regeneration are placed into context of the literature. RECENT FINDINGS: A wealth of new data has helped to define cochlear sensory progenitors in their developmental trajectories. This includes transcription factor networks, epigenetic manipulations, and cochlear HC subtype specification. SUMMARY: Understanding how sensory progenitors differ and how HC subtypes arise will substantially inform efforts in hearing restoration.


Asunto(s)
Cóclea , Células Ciliadas Auditivas , Diferenciación Celular , Epigénesis Genética , Humanos , Regeneración
9.
Front Cell Dev Biol ; 7: 87, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31192206

RESUMEN

Stem cell replacement therapy is a potential method for repopulating lost spiral ganglion neurons (SGNs) in the inner ear. Efficacy of cell replacement relies on proper differentiation. Defining the dynamic expression of different transcription factors essential for neuronal differentiation allows us to monitor the progress and determine when the protein functions in differentiating stem cell cultures. Using immortalized multipotent otic progenitors (iMOPs) as a cellular system for SGN differentiation, a method for determining dynamic protein expression from heterogeneous cultures was developed. iMOP-derived neurons were identified and ordered by increasing neurite lengths to create a pseudotime course that reflects the differentiation trajectory. The fluorescence intensities of transcription factors SOX2 and NEUROD1 from individual pseudotemporally ordered cells were measured. Individual cells were grouped by K-means clustering and the mean fluorescence intensity for each cluster determined. Curve fit of the mean fluorescence represented the protein expression dynamics in differentiating cells. The method provides information about protein expression dynamics in differentiating stem cell cultures.

10.
Stem Cell Reports ; 9(5): 1516-1529, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29033307

RESUMEN

Loss of spiral ganglion neurons (SGNs) significantly contributes to hearing loss. Otic progenitor cell transplantation is a potential strategy to replace lost SGNs. Understanding how key transcription factors promote SGN differentiation in otic progenitors accelerates efforts for replacement therapies. A pro-neural transcription factor, Neurogenin1 (Neurog1), is essential for SGN development. Using an immortalized multipotent otic progenitor (iMOP) cell line that can self-renew and differentiate into otic neurons, NEUROG1 was enriched at the promoter of cyclin-dependent kinase 2 (Cdk2) and neurogenic differentiation 1 (NeuroD1) genes. Changes in H3K9ac and H3K9me3 deposition at the Cdk2 and NeuroD1 promoters suggested epigenetic regulation during iMOP proliferation and differentiation. In self-renewing iMOP cells, overexpression of NEUROG1 increased CDK2 to drive proliferation, while knockdown of NEUROG1 decreased CDK2 and reduced proliferation. In iMOP-derived neurons, overexpression of NEUROG1 accelerated acquisition of neuronal morphology, while knockdown of NEUROG1 prevented differentiation. Our findings suggest that NEUROG1 can promote proliferation or neuronal differentiation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proliferación Celular , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis , Ganglio Espiral de la Cóclea/citología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Células Cultivadas , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Código de Histonas , Ratones , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología
11.
Front Cell Neurosci ; 11: 137, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28572758

RESUMEN

The sensory hair cells of the inner ear are exquisitely sensitive to ototoxic insults. Loss of hair cells after exposure to ototoxic agents causes hearing loss. Chemotherapeutic agents such as cisplatin causes hair cell loss. Cisplatin forms DNA mono-adducts as well as intra- and inter-strand DNA crosslinks. DNA cisplatin adducts are repaired through the DNA damage response. The decision between cell survival and cell death following DNA damage rests on factors that are involved in determining damage tolerance, cell survival and apoptosis. Cisplatin damage on hair cells has been the main focus of many ototoxic studies, yet the effect of cisplatin on supporting cells has been largely ignored. In this study, the effects of DNA damage response in cochlear supporting cells were interrogated. Supporting cells play a major role in the development, maintenance and oto-protection of hair cells. Loss of supporting cells may indirectly affect hair cell survival or maintenance. Activation of the Phosphoinositide 3-Kinase (PI3K) signaling was previously shown to promote hair cell survival. To test whether activating PI3K signaling promotes supporting cell survival after cisplatin damage, cochlear explants from the neural subset (NS) Cre Pten conditional knockout mice were employed. Deletion of Phosphatase and Tensin Homolog (PTEN) activates PI3K signaling in multiple cell types within the cochlea. Supporting cells lacking PTEN showed increased cell survival after cisplatin damage. Supporting cells lacking PTEN also showed increased phosphorylation of Checkpoint Kinase 1 (CHK1) levels after cisplatin damage. Nearest neighbor analysis showed increased numbers of supporting cells with activated PI3K signaling in close proximity to surviving hair cells in cisplatin damaged cochleae. We propose that increased PI3K signaling promotes supporting cell survival through phosphorylation of CHK1 and increased survival of supporting cells indirectly increases hair cell survival after cisplatin damage.

12.
eNeuro ; 4(1)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28303259

RESUMEN

The nonselective cation channel transient receptor potential ankyrin 1 (TRPA1) is known to be a key contributor to both somatosensation and pain. Recent studies have implicated TRPA1 in additional physiologic functions and have also suggested that TRPA1 is expressed in nonneuronal tissues. Thus, it has become necessary to resolve the importance of TRPA1 expressed in primary sensory neurons, particularly since previous research has largely used global knock-out animals and chemical TRPA1 antagonists. We therefore sought to isolate the physiological relevance of TRPA1 specifically within sensory neurons. To accomplish this, we used Advillin-Cre mice, in which the promoter for Advillin is used to drive expression of Cre recombinase specifically within sensory neurons. These Advillin-Cre mice were crossed with Trpa1fl/fl mice to generate sensory neuron-specific Trpa1 knock-out mice. Here, we show that tissue-specific deletion of TRPA1 from sensory neurons produced strong deficits in behavioral sensitivity to mechanical stimulation, while sensitivity to cold and heat stimuli remained intact. The mechanical sensory deficit was incomplete compared to the mechanosensory impairment of TRPA1 global knock-out mice, in line with the incomplete (∼80%) elimination of TRPA1 from sensory neurons in the tissue-specific Advillin-Cre knock-out mice. Equivalent findings were observed in tissue-specific knock-out animals originating from two independently-generated Advillin-Cre lines. As such, our results show that sensory neuron TRPA1 is required for mechanical, but not cold, responsiveness in noninjured skin.


Asunto(s)
Nocicepción/fisiología , Células Receptoras Sensoriales/metabolismo , Umbral Sensorial/fisiología , Piel/inervación , Tacto/fisiología , Canales de Potencial de Receptor Transitorio/deficiencia , Animales , Calcio/metabolismo , Células Cultivadas , Frío , Femenino , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Calor , Vértebras Lumbares , Masculino , Mecanotransducción Celular/efectos de los fármacos , Mecanotransducción Celular/fisiología , Ratones Noqueados , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Nocicepción/efectos de los fármacos , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Umbral Sensorial/efectos de los fármacos , Piel/metabolismo , Canal Catiónico TRPA1 , Tacto/efectos de los fármacos , Canales de Potencial de Receptor Transitorio/agonistas , Canales de Potencial de Receptor Transitorio/genética
13.
Proc Natl Acad Sci U S A ; 114(3): E307-E316, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-28053230

RESUMEN

After endocytosis, transmembrane cargo reaches endosomes, where it encounters complexes dedicated to opposing functions: recycling and degradation. Microdomains containing endosomal sorting complexes required for transport (ESCRT)-0 component Hrs [hepatocyte growth factor-regulated tyrosine kinase substrate (HGRS-1) in Caenorhabditis elegans] mediate cargo degradation, concentrating ubiquitinated cargo and organizing the activities of ESCRT. At the same time, retromer associated sorting nexin one (SNX-1) and its binding partner, J-domain protein RME-8, sort cargo away from degradation, promoting cargo recycling to the Golgi. Thus, we hypothesized that there could be important regulatory interactions between retromer and ESCRT that balance degradative and recycling functions. Taking advantage of the naturally large endosomes of the C. elegans coelomocyte, we visualized complementary ESCRT-0 and RME-8/SNX-1 microdomains in vivo and assayed the ability of retromer and ESCRT microdomains to regulate one another. We found in snx-1(0) and rme-8(ts) mutants increased endosomal coverage and intensity of HGRS-1-labeled microdomains, as well as increased total levels of HGRS-1 bound to membranes. These effects are specific to SNX-1 and RME-8, as loss of other retromer components SNX-3 and vacuolar protein sorting-associated protein 35 (VPS-35) did not affect HGRS-1 microdomains. Additionally, knockdown of hgrs-1 had little to no effect on SNX-1 and RME-8 microdomains, suggesting directionality to the interaction. Separation of the functionally distinct ESCRT-0 and SNX-1/RME-8 microdomains was also compromised in the absence of RME-8 and SNX-1, a phenomenon we observed to be conserved, as depletion of Snx1 and Snx2 in HeLa cells also led to greater overlap of Rme-8 and Hrs on endosomes.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/metabolismo , Fosfoproteínas/metabolismo , Nexinas de Clasificación/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/antagonistas & inhibidores , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Chaperonas Moleculares , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/genética , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Proteolisis , ARN Interferente Pequeño/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Nexinas de Clasificación/antagonistas & inhibidores , Nexinas de Clasificación/genética
14.
Curr Pharmacol Rep ; 3(2): 68-76, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29862164

RESUMEN

Neural stem cells (NSCs) in the adult central nervous system play essential roles in both normal homeostasis and repair of damaged tissue after injury. The study of adult NSCs is hampered by the heterogeneous NSC population. In this review, we describe recent progresses in using single-cell RNA-sequencing (scRNA-seq) technique for the investigation of NSCs. The first part of this review focuses on the scRNA-seq techniques and bioinformatic analysis. The second part emphasizes the applications of scRNA-seq analysis in NSC research. Finally, we discuss the challenges and future directions of scRNA-seq technique for both basic research and regenerative medicine.

15.
Sci Rep ; 6: 38665, 2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-27924849

RESUMEN

Notch1 signaling plays a critical role in maintaining and determining neural stem/progenitor cell (NSPC) fate, yet the transcriptional mechanism controlling Notch1 specific expression in NSPCs remains incomplete. Here, we show transcription factor Nkx6.1 interacts with a cis-element (CR2, an evolutionarily conserved non-coding fragment in the second intron of Notch1 locus) and regulates the expression of Notch1 in ventral NSPCs of the developing spinal cord. We show that the Notch1 expression is modulated by the interaction of Nkx6.1 with a 139 bp enhancer sequence within CR2. Knockdown or overexpression of Nkx6.1 leads to down- or up-regulated Notch1 expression, respectively. In CR2-GFP transgenic mouse, GFP expression was found prominent in the ventricular zone and neural progenitor cells from embryonic day 9.5 to postnatal day 7. GFP+ cells were mainly neural progenitors for interneurons and not for motoneurons or glial cells. Moreover, GFP expression persisted in a subset of ependymal cells in the adult spinal cord, suggesting that CR2 is active in both embryonic and adult NSPCs. Together our data reveal a novel mechanism of Notch1 transcriptional regulation in the ventral spinal cord by Nkx6.1 via its binding with Notch1 enhancer CR2 during embryonic development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Células-Madre Neurales/metabolismo , Receptor Notch1/genética , Asta Ventral de la Médula Espinal/citología , Asta Ventral de la Médula Espinal/metabolismo , Animales , Recuento de Células , Diferenciación Celular , Elementos de Facilitación Genéticos , Genes Reporteros , Inmunohistoquímica , Interneuronas/citología , Interneuronas/metabolismo , Ratones , Modelos Biológicos , Neuronas Motoras/citología , Neurogénesis/genética , Unión Proteica , Transcripción Genética
16.
EMBO J ; 35(23): 2536-2552, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27458190

RESUMEN

The transmembrane recognition complex (TRC40) pathway mediates the insertion of tail-anchored (TA) proteins into membranes. Here, we demonstrate that otoferlin, a TA protein essential for hair cell exocytosis, is inserted into the endoplasmic reticulum (ER) via the TRC40 pathway. We mutated the TRC40 receptor tryptophan-rich basic protein (Wrb) in hair cells of zebrafish and mice and studied the impact of defective TA protein insertion. Wrb disruption reduced otoferlin levels in hair cells and impaired hearing, which could be restored in zebrafish by transgenic Wrb rescue and otoferlin overexpression. Wrb-deficient mouse inner hair cells (IHCs) displayed normal numbers of afferent synapses, Ca2+ channels, and membrane-proximal vesicles, but contained fewer ribbon-associated vesicles. Patch-clamp of IHCs revealed impaired synaptic vesicle replenishment. In vivo recordings from postsynaptic spiral ganglion neurons showed a use-dependent reduction in sound-evoked spiking, corroborating the notion of impaired IHC vesicle replenishment. A human mutation affecting the transmembrane domain of otoferlin impaired its ER targeting and caused an auditory synaptopathy. We conclude that the TRC40 pathway is critical for hearing and propose that otoferlin is an essential substrate of this pathway in hair cells.


Asunto(s)
ATPasas Transportadoras de Arsenitos/metabolismo , Exocitosis , Células Ciliadas Auditivas/metabolismo , Audición , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Animales , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Humanos , Ratones , Proteínas Nucleares/genética , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
17.
Biol Open ; 5(6): 698-708, 2016 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-27142333

RESUMEN

Loss of sensory hair cells of the inner ear due to aminoglycoside exposure is a major cause of hearing loss. Using an immortalized multipotent otic progenitor (iMOP) cell line, specific signaling pathways that promote otic cell survival were identified. Of the signaling pathways identified, the PI3K pathway emerged as a strong candidate for promoting hair cell survival. In aging animals, components for active PI3K signaling are present but decrease in hair cells. In this study, we determined whether activated PI3K signaling in hair cells promotes survival. To activate PI3K signaling in hair cells, we used a small molecule inhibitor of PTEN or genetically ablated PTEN using a conditional knockout animal. Hair cell survival was challenged by addition of gentamicin to cochlear cultures. Hair cells with activated PI3K signaling were more resistant to aminoglycoside-induced hair cell death. These results indicate that increased PI3K signaling in hair cells promote survival and the PI3K signaling pathway is a target for preventing aminoglycoside-induced hearing loss.

18.
Curr Pharmacol Rep ; 2(5): 211-220, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28758056

RESUMEN

The spiral ganglion neurons (SGNs) of the cochlea are essential for our ability to hear. SGN loss after exposure to ototoxic drugs or loud noise results in hearing loss. Pluripotent stem cell-derived and endogenous progenitor cell types have the potential to become SGNs and are cellular foundations for replacement therapies. Repurposing transcriptional regulatory networks to promote SGN differentiation from progenitor cells is a strategy for regeneration. Advances in the Fludigm C1 workflow or Drop-seq allow sequencing of single cell transcriptomes to reveal variability between cells. During differentiation, the individual transcriptomes obtained from single-cell RNA-seq can be exploited to identify different cellular states. Pseudotemporal ordering of transcriptomes describes the differentiation trajectory, allows monitoring of transcriptional changes and determines molecular barriers that prevent the progression of progenitors into SGNs. Analysis of single cell transcriptomes will help develop novel strategies for guiding efficient SGN regeneration.

19.
Database (Oxford) ; 2015: bav071, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26209310

RESUMEN

The inner ear is a highly specialized mechanosensitive organ responsible for hearing and balance. Its small size and difficulty in harvesting sufficient tissue has hindered the progress of molecular studies. The protein components of mechanotransduction, the molecular biology of inner ear development and the genetic causes of many hereditary hearing and balance disorders remain largely unknown. Inner-ear gene expression data will help illuminate each of these areas. For over a decade, our laboratories and others have generated extensive sets of gene expression data for different cell types in the inner ear using various sample preparation methods and high-throughput genome-wide approaches. To facilitate the study of genes in the inner ear by efficient presentation of the accumulated data and to foster collaboration among investigators, we have developed the Shared Harvard Inner Ear Laboratory Database (SHIELD), an integrated resource that seeks to compile, organize and analyse the genomic, transcriptomic and proteomic knowledge of the inner ear. Five datasets are currently available. These datasets are combined in a relational database that integrates experimental data and annotations relevant to the inner ear. The SHIELD has a searchable web interface with two data retrieval options: viewing the gene pages online or downloading individual datasets as data tables. Each retrieved gene page shows the gene expression data and detailed gene information with hyperlinks to other online databases with up-to-date annotations. Downloadable data tables, for more convenient offline data analysis, are derived from publications and are current as of the time of publication. The SHIELD has made published and some unpublished data freely available to the public with the hope and expectation of accelerating discovery in the molecular biology of balance, hearing and deafness.


Asunto(s)
Bases de Datos Genéticas , Oído Interno , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Genómica , Mecanotransducción Celular , Animales , Humanos
20.
Stem Cell Reports ; 4(1): 47-60, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25497456

RESUMEN

Sensorineural hearing loss is caused by the loss of sensory hair cells and neurons of the inner ear. Once lost, these cell types are not replaced. Two genes expressed in the developing inner ear are c-Myc and Sox2. We created immortalized multipotent otic progenitor (iMOP) cells, a fate-restricted cell type, by transient expression of C-MYC in SOX2-expressing otic progenitor cells. This activated the endogenous C-MYC and amplified existing SOX2-dependent transcripts to promote self-renewal. RNA-seq and ChIP-seq analyses revealed that C-MYC and SOX2 occupy over 85% of the same promoters. C-MYC and SOX2 target genes include cyclin-dependent kinases that regulate cell-cycle progression. iMOP cells continually divide but retain the ability to differentiate into functional hair cells and neurons. We propose that SOX2 and C-MYC regulate cell-cycle progression of these cells and that downregulation of C-MYC expression after growth factor withdrawal serves as a molecular switch for differentiation.


Asunto(s)
Amplificación de Genes , Regulación de la Expresión Génica , Células Ciliadas Auditivas/citología , Células Ciliadas Auditivas/metabolismo , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción SOXB1/metabolismo , Animales , Biomarcadores , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular , Proliferación Celular , Microambiente Celular , Factor 2 de Crecimiento de Fibroblastos/farmacología , Expresión Génica , Perfilación de la Expresión Génica , Células Ciliadas Auditivas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Cariotipo , Ratones , Células Madre Multipotentes/efectos de los fármacos , Fenotipo , Proteínas Proto-Oncogénicas c-myc/genética , Factores de Transcripción SOXB1/genética , Transcripción Genética , Transcriptoma , Transducción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...